Muthu, S and Abern, R and Mohan, V and Premalatha, G and Srinivasan, R and Thyagarajan, S and Rao, U (2006) Phenotypes of Isolates of in a Diabetes Care Center. Archives of Medical Research, 37 (1). pp. 95-101. ISSN 01884409
PDF Restricted to MDRF users only. Others may -> 205Kb |
Abstract
Background. Pseudomonas aeruginosa is an invasive organism that frequently causes severe tissue damage in diabetic foot ulcers. A major problem in P. aeruginosa infection may be that this pathogen exhibits a high degree of resistance to a broad spectrum of antibiotics. Some researchers feel that P. aeruginosa is a homogeneous species, whereas others have suggested that they are panmictic. Here we characterized P. aeruginosa populations isolated from diabetic foot ulcer and from hospital environment specimens, both from a tertiary diabetes care center in Chennai, India. Methods. Phenotypic methods like antibiotic susceptibility determinations using Kirby– Bauer’s disc diffusion test and minimum inhibitory concentration (MIC) as well as outer membrane protein SDS-PAGE analysis of P. aeruginosa were performed. Results. Twenty three isolates (29.8%) of P. aeruginosa from 77 diabetic foot ulcers and two environmental isolates (13.3%) from 15 different hospital fomites were detected. Both environmental isolates were sensitive to antibiotics than those isolated from clinical specimens by Kirby–Bauer’s disk-diffusion method, which correlated the resistance levels by MIC determination. Outer membrane proteins (OMP) corresponding to 21, 23, 43, 46, 50, and 70 kDa were detected. Conclusions. The study is captivative as the resistance in P. aeruginosa from diabetic foot ulcers seems very common and because all the isolates were resistant to at least one or more antibiotics tested. Disk-diffusion and MIC results shows that piperacillin, amikacin and imipenem retain high levels of antipseudomonal activities and amikacin two times more active than the aforementioned antibiotics to enable itself as a potent antipseudomonal agent in diabetic foot infections. The OMP profile has revealed that clinical isolates were different from hospital environment isolates, which suggests that the origin of infections by P. aeruginosa is mainly due to growth of bacterial strains acquired by patients prior to hospital admission.
Item Type: | Article |
---|---|
Official URL/DOI: | http://dx.doi.org/10.1016/j.arcmed.2005.04.012 |
Uncontrolled Keywords: | Diabetes;Phenotypes;Diabetic foot; Multi-drug resistance; Outer membrane proteins; Pseudomonas aeruginosa; SDS-PAGE |
Subjects: | Diabetology > Neuro Diabetology Genetics and Diabetes > Neurogenic Differentiation Factor 1(NEUROD1) Diabetes > Diabetes Management |
Divisions: | Department of Diabetology Department of Advanced Research Biochemistry |
ID Code: | 155 |
Deposited By: | INVALID USER |
Deposited On: | 04 Nov 2009 09:47 |
Last Modified: | 04 Nov 2009 09:47 |
Repository Staff Only: item control page