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Altered cytosolic Ca2+ is implicated in the aetiology
of many diseases including diabetes but there are
few studies on the mechanism(s) of the altered Ca2+

regulation. Using human lymphocytes, we studied
cytosolic calcium (Ca/) and various Ca2+ transport
mechanisms in subjects with Type 2 diabetes
mellitus and control subjects. Ca2+-specific fluor-
escent probes (Fura-2 and Fluo-3) were used to
monitor the Ca2+ signals. Thapsigargin, a potent and
specific inhibitor of the sarco(endo)plasmic reticu-
lum Ca2+-ATPase (SERCA), was used to study Ca2+-
store dependent Ca2+ fluxes. Significant (P<0.05)
elevation of basal Ca/ levels was observed in
lymphocytes from diabetic subjects. Ca/levels were
positively corr41ted with fasting, plasma glucose
and HbAlc. There was also a significant (P<0.05)
reduction in plasma membrane calcium (PMCA)
ATPase activity in diabetic subjects compared to
controls. Cells from Type 2 diabetics exhibited an
increased Ca2+ influx (as measured both by Fluo-3
fliorescence and 45Ca assays) as a consequence of
fhapsigargin-mediated Ca2+ store depletion. Upon
addition of Mn2+ (a surrogate of Ca2+), the fura-2
fluorescence decayed in an exponential fashion and
the rate and extent of this decline was steeper and
greater in cells from type 2 diabetic patients. There
was also a significant (P<0.05) difference in the
Na+/Ca2+ exchange activity in Type 2 diabetic
patients, both under resting conditions and after

challenging the cells with thapsigargin, when the
internal store Ca2+ sequestration was circumvented.
Pharmacological activation of protein kinase C
(PKC) in cells from patients resulted in only partial
inhibition of Ca2+ entry. We conclude that cellular
Ca2+ accumulation in cells from Type 2 diabetes
results from (a) reduction in PMCA ATPase activity,
(b) modulation of Na+/Ca2+ exchange and (3)
increased Ca2+ influx across the plasma membrane.
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INTRODUCTION

Recent reports indicate that Asian Indians as a
race have a high prevalence of diabetes.1

Indeed, India has the largest number of diabetic
patients in the world and these numbers are

expected to further increase in the next few
[21decades. Type 2 diabetes mellitus (non-insu-

lin-dependent diabetes mellitus, NIDDM) is the
most common form representing over 85% of all
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diabetes cases,TM and is commonly accompanied
by elevated blood pressure. Type 2 diabetes
is characterised by relative insulin deficiency
and insulin resistance, but the cellular and
molecular mechanism(s) of these defects remain
unclear.
There is increasing evidence that Ca2 + plays

an important regulatory role in the cascade of
insulin-generated signals [4-6] and fl-cell func-
tion. I7 Elevated or sustained levels of cytosolic
calcium (Ca/) has been shown to diminish
cellular sensitivity to insulin and might partici-
pate in the pathogenesis of insulin resistance in

Type 2 diabetes and in various diabetes-related
metabolic derangements,ks-11] Altered cellular
Ca2+ homeostasis could also well be an im-

portant mechanism for abnormal glucose meta-
bolism and elevated blood pressure in Type 2
diabetes patients. Although the potential impor-
tance of the observed increases in cellular Ca2 +

is clear, the mechanism(s) responsible for this
elevation of Ca/has not been identified. There-
fore, mechanistic Ca2 + turnover studies could
provide a basis for better understanding at the
cellular and molecular level of the long recog-
nised clinical linkage between cardiovascular
and metabolic syndromes. These intermediate
phenotypes are also essential tools to fill the gap
between gene polymorphism and complex dis-
eases.

It is conceivable that the signal transduction
defects of the Ca2 + messenger system in the
blood cells would reflect similar disturbances in

target tissues affected in diabetes and diabetes-
associated complications. Additionally, mea-
surements of intracellular cations using circulat-
ing blood cells have been shown to be highly
reproducible and the phenotypic characteristics

persist even in cell culture models. [12] Lympho-
cytes were used in this study because they are

readily accessible, their cytosolic calcium regula-
tion is well understood13’ 14] and more impor-
tantly they could potentially provide genomic
DNA for studying the underlying genetic
mechanisms of diabetic complications.

MATERIALS AND METHODS

Materials

’Lymphoprep’ was obtained from GIBCO Life

Technologies (Gaithersburg, MD, USA). Thapsi-
gargin, ionomycin, Fura-2 AM and Fluo-3 AM,
phorbol 12-myristate 13-acetate (PMA), ouabain
and other coupled-enzyme chemicals were from
Sigma Chemicals (St Louis, MO, USA). 45Ca2 +
was purchased from Amersham (Amersham-
Pharmacia Biotech, India). All other buffer chemi-
cals were of analytical grade.

Subjects and Blood Chemistry Assays

This study was performed in 30 Type 2 diabetes

patients and 30 age and weight matched control
subjects, recruited from the M.V.Diabetes Speci-
alities Centre, Chennai, formerly Madras in
Southern India. Diagnosis of Type 2 diabetes
was based on the criteria of the World Health
Organization study group on diabetes. I15 In-
formed consent was obtained from all study
subjects. Blood samples and blood pressure
measurements were taken between 0700 and
0900h after an overnight fast. Blood (20ml)
drawn from each subject in acid citrate dextrose
buffer was used for lymphocyte Ca2 + studies.
An additional 10ml blood treated with EGTA
was used for measurement of blood chemistry
parameters. The study protocol was approved
by the ethical committee of Centre for Bio-

technology, Anna University. All biochemi-
cal studies were done on Corning Express plus
Auto Analyzer (Corning, USA). Fasting
plasma glucose (glucose oxidase method) was
estimated using kits from Boehringer Man-
nheim, Germany. Glycosylated haemoglobin
(HbAlc) were estimated by high-pressure liquid
chromatography (HPLC) method using the
Variant machine (Bio Rad, Hercules, USA).
Lipid profile and serum creatinine were assayed
using commercial kits (Boehringer Mannheim,
Germany).
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Isolation of Lymphocytes
from Whole Blood

Lymphocytes were isolated by the method of
density gradient centrifugationt161 with modifi-
cations described earlier, t131 Blood was diluted
with an equal volume of HEPES buffered
solution (HBS) and layered onto lymphoprep
(2:1 vol/vol). After density gradient centrifuga-
tion (45min at 1700rpm), lymphocytes were
collected from the interface, diluted 1:1 with
HBS. The lymphocyte pellet that resulted from a
second centrifugation at 1600 rpm for 10 min
was resuspended in Hepes buffer.

Membrane Preparation
and Coupled-enzyme Assay

The cells resuspended in a lysis medium
containing 62.5 mmol/1 Tris-HC1, pH 6.8, 1%
SDS, 5 mole/1 Urea, 10% glycerol with appro-
priate protease inhibitors, were disrupted by
low ultrasonication (300 cycles) for 3 min. The
lysed cells were centrifuged at 500g for 15
minutes (4C) and the supernatant was further
spun at 14,000g for 45min (4C). The final
membrane pellet was resuspended at a concen-
tration of 5 mg/ml.
The rate of Ca2 + dependent ATP hydrolysis

was determined by a coupled-enzyme sys-
tem. [171 The composition of the final mixture
for the assay medium was 120mmol/1 KC1,
30mmol/1 HEPES, 2.5mmol/1 MgCI2, 1 IU/ml
pyruvate kinase, 1 IU/ml lactate dehyrogenase,
120 gg/ml phosphoenol pyruvate, 150 gg/ml of
NADH, 10- 20 gg membrane protein, 5 gM
ionomycin, and lmmol/1 ATP (pH 7.0 at 37C).
The membranes were preincubated with or
without thapsigargin for 5 min prior to the start
of the reaction and introduced into the ATP
containing assay medium. The oxidation of
NADH was monitored at 340nm in a Hitachi
Spectrophotometer (model U-3210, Japan),
which directly indicated the hydrolysis of ATP
by the Ca2 + ATPase. Free Ca2 + in the medium

was adjusted by EGTA and CaC12 additions,
using a computer program. Ca2+ dependent
hydrolysis of ATP was determined by subtract-
ing the rate of activity in the presence of EGTA
from the rate in the presence of Ca2 +.

45Ca2+ Uptake in Intact Lymphocytes

Lymphocytes were preincubated with (for
Na +/Ca2+ exchange assay) or without (for
Ca2+ entry assay) 0.1mmol/1 ouabain in Na +

containing medium for 30 min. To initiate Ca2 +

uptake, aliquots of cells (1 x 108 cells/ml) were
diluted into Na + containing medium or Na +

free medium (NaC1 is iso-osmotically replaced
by NMDG) containing 10 gCi/ml 45CAC12. Oua-
bain pretreatment was used to increase cytosolic
Na + through inhibition of the Na +/K + AT-
Pase.[141 In experiments where the cells were
treated with thapsigargin (Tg), 100 nmol/1 Tg
was included in the assay medium. After one
minute incubation at 37C, Ca2 + uptake was

stopped by addition of 5 ml of ice-cold stopping
buffer (40mmol/1 Hepes, 100mmol/1 MgCI2,
5 mmol/1 LaCI3). Extracellular radioactivity was
removed by rapid filtration of cells on 0.45 g
filters with two additional washes of stopping
buffer. Each data point represents the mean of
’n’ experiments derived from triplicate or quad-
ruplicate measurements. Background counts
(medium without cells) were substracted from
all experimental time points.

Fluorescent Dye Loading Ca/Monitoring

Lymphocytes were incubated with 5 gmol/1
Fura-2 or 5 gmol/1 Fluo-3 for a minimum of 30
min at 37C and delivered as 100 gl (0.5 x 106
cells/ml) aliquots. Prior to each experiment,
cells were centrifuged for 5-10 sec at room

temperature, resuspended in 100 gl of HBS, and
injected into cuvettes containing 3 ml of assay
buffer. Ca/ monitoring using Fluo-3 was mon-
itored in a Hitachi spectrofluorimeter (model
F-3010, Japan) by excitation wavelength set at
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490nm and emission wavelength at 525nm.
Calibration was achieved by exposing newly
resuspended lymphocytes to digitonin and
EGTA to get Fmax and Fmin values. [13] From the
fluorescence values (F), the Ca/was calculated
according to the method of Grynkiewicz et al. [18]

utilizing the dissociation constant of the dye
(Kd--400 nM), Fmax and Fmin values. Autofluor-
escence of the unloaded cells was substracted
from the fluorescence values.

Mn2+ Quench Experiments

Mn2+ has been used as a Ca2 + surrogate to

study Ca2+ entry mechanisms [13]. We thus
monitored the rate of quenching of intracellular
fura-2 by Mn2 + as a measure of Ca2 + entry
across the plasma membrane. This analysis was
performed by following the decay of fura 2
fluorescence at excitation wavelength 360 nm in

lymphocytes suspended in Ca2 +-HBS and in-
cubated with 0.5 mmol/1 MnC12.

Data Analysis

Statistical analysis was performed with Stu-
dent’s test, one-way analysis of variance and
correlation analyses. P K 0.05 was considered to
be statistically significant. Data in the figures are

expressed as Means 4-SE.

RESULTS

Clinical characteristics of the control and Type
2 diabetes subjects are summarised in Table I.
Diabetic patients had significantly (P K0.05)
higher body mass index, fasting plasma glucose,
cholesterol, HbAlc and systolic blood pressure
than controls. Ca/was positively correlated with

fasting plasma glucose (r 0.4752, p 0.05) and
HblAc (r 0.5617, p 0.05).
The basal Ca/measurement performed using

Fluo-3 in lymphocytes is shown in Figure 1. The

TABLE Clinical Characteristics of study subjects

Type 2
Control diabetes

Parameters (n 30) (n 30)

Age (years) 50.6 -4- 11 54.4 + 11
BMI (kg/m2) 23.6 4- 4.6 31.9 4- 9.1"

Systolic blood pressure (mm Hg) 127 4- 17 136 4- 13"
Diastolic blood pressure (mm Hg) 79 4- 10 81 4- 11

Fasting plasma glucose (mg/dl) 81 4- 14 163 4- 48*
HbAlc (%) 6.0 4- 0.4 8.1 4- 1.7"
Cholesterol (mg/dl) 173 4- 34 193 4- 35*

Triglyceride (mg/dl) 111 4- 39 132 4- 56
HDL (mg/dl) 41 4- 10 38 4- 11
LDL (mg/dl) 116 4- 32 128 4- 39
Creatinine (mg/dl) 0.8 4- 0.2 0.9 4- 0.2

Values are Means 4- SD.
P 0.05.

resting Ca/in lymphocytes from Type 2 diabetes
(57.4 nmol/1) was signficantly higher than in
cells from control (43.7 nmol/1) subjects. Because
changes in Ca/ result from a number of
biochemical processes, we looked into specific
Ca2+ transport pathways that govern Ca2+

homeostasis. Figure 2 shows the Ca2 + ATPase
activities (tmole/mg protein/min) in lympho-
cytes from control and Type 2 diabetic indivi-
duals respectively. Thapsigargin (Tg), a novel
inhibitor of the SERCA-ATPase(s),I19’ 201 was
used to determine the relative contribution of
different Ca2 + ATPase activities. Tg-resistant
component was considered as plasma mem-
brane calcium (PMCA) ATPase activity and
sarco(endo)plasmic calcium (SERCA) ATPase
activity as Tg-sensitive component. In control
cells, total activity (0.1794-0.013 tmole/mg
protein/min) comprises 62% of Tg-resistant
(0.110 4- 0.008) and 38% of Tg-sensitive
(0.068 4-0.01) activities. In contrast, the total
Ca2+ ATPase activity (0.147 4- 0.013 tmole/mg
protein/min) in cells from Type 2 diabetes was

represented by an equal share of Tg-resistant
(0.073 4- 0.007) and Tg-sensitive (0.073 4- 0.007)
components. While there was no significant
difference in SERCA ATPase activities in mem-
branes from control and patients, lympocyte
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FIGURE Basal Ca/levels in lymphocytes from control (n 12) and Type 2 diabetes (n- 12) subjects.
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FIGURE 2 Mean Ca + -ATPase activities in control and Type 2 diabetes subjects. Thapsigargin (Tg) was used to determine Tg-
sensitive (SERCA) and Tg-resistant (PMCA) ATPase activities, as detailed in the Methods. Tg-resistant (PMCA) ATPase
activities in cells from control and Type 2 diabetes subjects differ significantly (P < 0.05).

membranes from Type 2 diabetic patients
exhibit lower levels (P < 0.05) of PMCA ATPase
activity (Fig. 2). Because inhibition of either the
PMCA or SERCA ATPases could lead to an
increase in cytosolic Ca2 +, the data suggests that

there is a defect in PMCA ATPase mediated
Ca2 + extrusion mechanism.
Na + dependent 45Ca uptake assay was used

to determine the Na +/Ca2+ exchange activity,
a maneuver that involves raising of the cytosolic
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Na + concentration and/or lowering of the
external Na + concentration. The protocol for
measuring Na + dependent Ca2 + uptake assay
is illustrated in Figure 3. Ouabain pretreatment
was used to inhibit the Na-K-ATPase, increase

Nai and decrease the inwardly directed Na
gradient that inhibits Ca entry by ’forward
mode’ Na +/Ca2+ exchange. A greater accumu-
lation of Ca2 + uptake seen in Na +-free condi-

5000

2500

+Na

lOO

FIGURE 3 Protocol for measuring Na +-dependent Ca +

influx. Lymphocytes were preincubated for 30 min at 37C
in Na + medium with or without 0.1mmol/1 ouabain and
resuspended in Na +-or Na +-free medium containing
45Ca2 +. Ca + uptake was measured after 60sec; each ex-
periment was performed in quadruplicate and averaged.
Data represent mean values of 6 individual experiments.

+ 2+% Na -Ca exchange (inset) was calculated by subtracting
medium from Na -freethe values of Ca + uptake in Na + +

medium.

tions is the evidence for Na +/Ca2+ exchange
activity (Fig. 3). Per cent Na +/Ca2+ exchange
was calculated by substracting the 45Ca2+
uptake in Na +-containing medium from that
obtained in Na + free conditions (inset). The
composite results of % Na +/Ca2+ exchange
derived from a number of similar experiments
with and without Tg and in control and Type 2
diabetes subjects are summarised in Figure 4.
In control cells, the reversal of Na + gradient
resulted in a net Ca2+ uptake mediated by
Na +/Ca2 + exchange (70.4%) that increased to
92.2% in the presence of Tg. The same maneuver
measured only 36% Na +/Ca2+ exchange activ-

ity in ceils from Type 2 diabetes, but this

significantly (P <0.05) increased to 137.2% in
the presence of Tg. These results suggest that
Na +/Ca2+ exchange activity is depressed in

Type 2 diabetes patients under resting, unsti-
mulated conditions. However, augmented
Na +/Ca2+ exchange was noticed in cells from
both control and Type 2 diabetic subjects after
treatment with Tg. Indeed, cells from Type 2
diabetes incubated with Tg, showed a 3 fold
increase in Na +/Ca2+ exchange activity when
compared to resting cells (Na +/Ca2+ exchange
activity recorded as an increase from 36% to
137%). This means that the internal stores

undoubtedly play a crucial role in buffering
increases in net Ca2 + gain occurred through

Control
A B

Diabetic

200

100

0
-Tg +Tg

200

100

I---- P<O.05--[

-Tg +Tg

FIGURE 4 Percentage Na +/Ca + exchange in lymphocytes from control (A) and Type 2 diabetes (B) subjects in the presence
and absence of thapsigargin (Tg). The methodology for these experiments is exactly the same as in Figure 3 and % Na +/Ca +

exchange values (each representing mean of 6 separate cell preparations) are shown combined.
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Na +/Ca2+ exchange. In the presence of Tg, the
internal store Ca2 + buffering was circumvented.

Since the alterations in resting Ca/ could be
a manifestation of changes occurring through
many mechanisms, we next looked into the
Ca2+ entry (Ca2+ uptake) processes across the
plasma membrane. 45Ca2+ uptake (one min)
measurements in the presence and absence of
Tg, in cells from control and Type 2 diabetic
patients respectively, are depicted in Figure 5.
Tg-mediated Ca2 + uptake over the resting Ca2 +

uptake was significantly (P <0.05) higher in
both control and Type 2 diabetic patient cells.
However, Tg-stimulated Ca2+ entry was sig-
nificantly higher (47.8%) in cells from Type
2 diabetics compared to control lymphocytes
(23.2%) (insets). Measurement of Ca/in lympho-
cytes from control and Type 2 diabetes subjects
also indicates a differential profile of store-
operated Ca2 + influx (Figs. 6A and B). Cells
from Type 2 diabetes exhibited an increased
initial rate of Tg-evoked Ca2+ influx when
compared to the similar profile in control cells.
As depicted in Figure 6C, mean Ca/levels at 60

sec after the addition of extracellular Ca (com-
parable to the one min 45Ca2+ uptake) were

significantly (P < 0.05) different in cells from
control (162 nmol/1) and patients (235 nmol/1).
Figure 7 illustrates the role of Tg-evoked Mn2 +

influx as another experimental maneuver for
studying store-operated Ca2 + influx.
Upon addition of Mn2 +, the fura-2 fluorescence
decayed in an exponential fashion and the
rate and the extent of this decline was steeper
and greater in cells from Type 2 diabetes. The
initial rate of Mn2 + entry is a parameter that
reflects the opening state of the Ca2 + influx

pathway.
Phorbol esters, such as PMA activate PKC and

alter multiple cellular responses. We incubated
lymphocytes with PMA, and monitored the Ca/
responses after treatment with Tg (Figs. 6A and
B). Though in general, PKC activation resulted
in inhibition of Ca2 + influx, the extent of this
inhibition in cells from Type 2 diabetic subjects
(38%) was substantially lower than control (68%)
subjects (Fig. 6D). This was also supported by
Mn2 + entry experiments (Figs. 7A and B).

A
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B
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FIGURE 5 45Ca2 + uptake in lymphocytes from control (A) and Type 2 diabetes (B) subjects. Lymphocytes were preincubated
for 30 min at 37C and resuspended in Na + medium containing 5Ca2 +. Ca + uptake was measured after 60 sec with or
without Tg in the medium. Each experiment was performed in quadruplicate and averaged. Data represent mean values of 6
individual experiments. % Tg-stimulated 45Ca2 + uptake was calculated by subtracting the values of Ca + uptake in the
presence of Tg from that in the absence of Tg (Insets).
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FIGURE 6 Tg-induced Ca + store-operated Ca + entry and its inhibition by PKC activation in control (A) and Type 2
diabetes (B). Lymphocytes were subjected to 100 nmol/1 Tg in Ca +-free HBS for 2 min and pretreated with and without 100
nmol/1 PMA. Ca + was then introduced in to the cuvette (arrow) to raise [Ca2+ ]e to mmol/1 and Ca/ profile was
subsequently followed for 3 min. Representative traces of 6 separate experiments. C: Mean values (n =6) of Tg-induced Ca +

influx in control and Type 2 diabetes subjects as calculated from the Ca/traces in the figure(s) after 60sec to the addition
of CaC12. D: Mean percentage (n 6) of PMA inhibited Tg-induced Ca + influx in control and Type 2 diabetes subjects.
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FIGURE 7 Mn + entry (Ca + influx) in lymphocytes from control (A) and Type 2 diabetes (B) subjects. Lymphocytes were
resuspended in Ca + -HBS and followed at 360nm excitation wavelength. Fluorescence reading immediately before addition
of 0.5 mmol/1 MnC12 (0 sec) was set at 100% intensity. Mn + quenching of cellular fura 2 was expressed as percentage of this
value. In experiments where PMA was used, lymphocytes were pre-incubated with the phorbol ester for 2 min and the
fluorescence monitoring was started with the addition of Tg and 0.5 mmol/1 MnC12. Representative traces of 6 separate
experiments.
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DISCUSSION

Several studies have demonstrated elevated Ca/
in cells from diabetic and/or hypertensive
individualsI10, 21-28] and a reduction in Ca/
associated with a combination drug therapy. L291

The fine tuning of the cell Ca2 + is primarily
performed by two high Ca2 + affinity pumps
under the control of SERCA and PMCA
ATPases. A calmodulin-stimulated ATP-depen-
dent Ca2 + uptake and a corresponding PMCA
ATPase have been described in lymphocytes. L3l

Balasubramanyam et al. [13] have also demon-
strated fluorimetrically a well defined Ca2+

extrusion process in freshly isolated human
peripheral blood lymphocytes, which is medi-
ated by Ca pump of the plasma membrane.
The present study shows that there is an

impairment in Ca2 + turnover in Type 2 diabetic
subjects with a significant reduction of PMCA
ATPase activity. In diabetic patients as well as
in experimental diabetes mellitus, there are

conflicting results on cellular Ca2+ ATPase
with the reports of decreased [31-37] and in-
creased [22, 38-39] activities. Our results support
the work of Spieker et al. [36] who demonstrated
decreased Ca2 +-ATPase activity in erythrocytes
from both Type 1 and Type 2 diabetic patients.
Similar inhibition of PMCA activity related to

higher Ca/levels in platelets from hypertensive
individuals has also been reported.4’ 41] The
mechanism(s) of inhibition of PMCA ATPase in
Type 2 diabetes might be attributed to increased
protein phosphatase activity, modulation of pro-
tein kinase A or C, or both. [421 While alterations in

lipid composition in patients (changes in both
membrane fluidity and acidic phospholipid con-
tent) have been shown to affect the plasma mem-
brane Ca2 + pump, high glucose in uncontrolled
diabetes would also probably leads to glycosyla-
tion of the PMCA pump and its inhibition. 431

Apart from PMCA ATPase, the other impor-
tant transport process that can mediate net Ca2 +

extrusion across the plasma membrane is Na + /
Ca2+ exchange. Our findings also suggest a

possible role for Na +/Ca2+ exchange in Ca2 +

regulation in lymphocytes and its modulation
in diabetes states. A primary increase in Na +

permeability,44j an increase in intracellular Na +

caused by a circulating inhibitor of the sodium
pump 451 or an increase in Na + due to
enhanced activity of the Na +/H + exchanger
could all promote Na +-dependent Ca2 + influx
via Na +/Ca2+ exchange leading to the ob-
served increase in Ca/. Pharmacologically, oua-
bain is routinely used in Na +-dependent Ca2 +

uptake studies. Lymphocytes exposed to 0.1
mmol/1 ouabain in Na + medium for 30 min
demonstrated elevated (40 mM) levels of
cytosolic [Na + ], as measured using Na +-spe-
cific SBFI fluorescent indicator. I141 Using this
and other maneuvers, Gardner and Balasubra-
manyam461 have demonstrated the existence of
Na + dependent Ca2 + entry pathway in periph-
eral T-lymphocytes and other cell lines. Our
methodology to measure Na +/Ca2+ exchange
activity in cells from Type 2 diabetes provides
evidence that Na +/Ca2+ exchange activity is
low in resting conditions and that depletion of
intracellular Ca2+ stores by Tg resulted in a
3 fold increase in its activity. It is important to
note that Na +/Ca2+ exchange is a completely
reversible electrogenic transport reaction, and
the operation of the carrier is controlled by the
magnitude and polarity of transmembrane elec-
trical potentials and ionic gradients. Hence,
depending on prevailing physiological condi-
tions, the transport could provide either a net
cellular efflux or influx of Ca2 +. In the light
of findings that the Na +/K + ATPase may be
inhibited by endogenous ouabain in some hyper-
tensive and/or diabetic subjects,I45" 47] increased
cytosolic Na + may indeed have a causal role in
the regulation of cytosolic Ca2 + and/or Ca2 +

content of intracellular stores. The present study
indicates that a reduction in normal extrusion
mode of Na +/Ca2+ exchange activity (or the
reverse-mode switch over) could be one of the
mechanisms that play a role in diabetes-mediated
accumulation of cellular Ca2 +.
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Studies in lymphocytes and pancreatic fl-cells
have shown that the depletion of intracellular
Ca2 + stores,j13, 48] leads to activation of Ca2 +

influx occurring through plasma membrane-
specific Ca2+ channels referred to as "store-
operated channels". Our measurements of Ca2 +

uptake/influx in lymphocytes from control and
Type 2 diabetes subjects indicate an augmented
store-operated Ca2+ influx in cells from dia-
betics. The molecular nature of these store-
operated ion channels have not been elucidated.
Nonetheless, the Drosophila transient receptor
potential (trp) gene has been suggested to
encode a store-operated ion channel.491 Recently
a number of vertebrate homologues of ’trp’ have
been cloned and expression of these proteins has
been demonstrated in a variety of tissues

including vascular endothelial cells and pan-
creatic fl-cells.5-521 Trp-related ion conduc-
tance is likely to serve hormonal control of cell
membrane potential and Ca2 + homeostasis, and
may therefore paly a significant role in physiol-
ogy and pathophysiology. As suggested by
Fekete et al. [531 the [Ca2+ ]i response to store-
depletion-activated Ca2 + influx by agonists may
serve as an intermediate phenotype for genetic
linkage studies in hypertension and/or diabetes.
Higher Tg-stimulated Ca2 + uptake/influx in

cells from Type 2 diabetes indicate that there
may be an impairment in mechanism(s) that
regulate Ca2 + influx. The physiological signal
for Ca2 + entry still remains a mystery. A role for
kinases and phosphatases has been impli-
cated.541 Protein kinase C (PKC) is known to
regulate Ca2+ homeostasis through negative
feedback mechanisms.55 It is interesting to note
that activation of feedback mechanisms such as
PKC only partially respond to increased Ca/
signals in cells from Type 2 diabetes. Infact,
hyperglycemia has been reported to increase

diacylglycerol and activate PKC activity in many
tissues and is thus linked to the vascular

[561complications. It is presently not clear
whether chronic PKC activation in Type 2
diabetics could down-regulate PKC and make

the cells unresponsive to PKC-mediated Ca/
regulation.
The positive correlation of Ca/with the plasma

glucose and HbAlc values support the earlier
views that both hyperglycemia and insulin

deficiency affect Ca/ regulation.57-591 HbAlc
levels, indicating the degree of metbolic control
over a longer period of time, may exert a lasting
effect on cellular Ca/and/or other intermediary
mechanisms. Interestingly, not only can higher
Ca/ levels contribute to insulin resistance, but
diabetes can also lead to significant alterations in
cellular Ca2 + handling.
The origin of the cellular Ca2+ shifts in

diabetes and/or hypertension is not clear.
Genetic defects in cell membrane Ca2 + trans-

port or transport of Ca2 + across the intracellular
membrane systems may contribute to alterations
in cellular Ca2 + homeostsis. There is general
agreement that genetic factors could be the
primary determinants of impaired insulin secre-
tion and action. Altered cellular and sub-cellular
Ca2 + homeostasis can cause abnormal insulin
secretion, increased vascular resistance, and
altered response of vascular smooth muscle cells
to Ca2 + mobilising vasoactive hormones.[6" 611

The vascular changes accompanied by an appre-
ciable rise in systemic blood pressure may in

turn, cause hypertension. Finally, as suggested
by Wehling and Theisen,I621 hypertension and
insulin resistance may have further deleterious
effects on membrane phospholipid content and
cellular Ca2+ homeostasis, creating a vicious

cycle.
This work has several implications for future

studies. This is the first report of Ca2 + turnover
studies in Indian Type 2 diabetes patients. We
have identified defects in Ca2 + transport activ-

ities, viz., ATPase(s), Na +/Ca2+ exchanger and
store-operated Ca2+ channels anc! these can
be studied further using both proteomic and
genomic approaches and lymphoblasts would
be an ideal cell culture model for such studies.
The fact that ion transport abnormalities are

persistent in in vitro culture [63, 64] indicates that
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these phenotypic expressions may be genetically
determined. More importantly, a recent study
has already reported sequence variants of the
SERCA 3 gene in white Caucasians with Type
2 diabetes I651 which needs to be studied in
different ethnic diabetic populations. Until a
true genetic marker is identified, cellular ele-
ments may serve as intermediate phenotypes for
screening high-risk diabetic patients and as
targets for the development of new therapeutic
compounds. Continued research efforts on mo-
lecular and genetic studies of families of diabetic
patients are warranted to identify the initial
defect and its genetic component of altered
Ca2 + homeostasis.
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