Abstract

Mucormycosis is highly invasive and devastating fungal infection. Here, we report a rare case of cutaneous mucormycosis presenting in both legs in a type 2 diabetic patient who showed response to oral antifungal therapy.

Introduction

Mucormycosis is an uncommon acute and often fatal opportunistic fungal infection. Conditions most commonly associated with mucormycosis include poorly controlled diabetes mellitus, metabolic acidosis, organ transplantation, leukemia, lymphoma, AIDS, malnourished children, severe burns, patients who receive desferoxamine therapy as a chelating agent and chronic steroid use. The commonest form of mucormycosis normally affects the rhinocerebral form while other types are less common. Cutaneous mucormycosis is a rare form of the lesion. Hence, we report on a case of cutaneous mucormycosis.

Case report

A 47-year-old newly detected type 2 diabetic patient presented with complaints of non-healing ulcer in both legs of 6 months' duration. She also complained of weight loss, blurred vision and weakness. On examination, she was overweight, febrile, blood pressure 140/96 mmHg and pulse rate 88/minute with feeble peripheral pulsations.

Local examination revealed dark, pigmented non-healthy ulcers with necrotic tissue, in the anterior aspect of right leg and on the lower one-third of posterior aspect of the left leg (Fig. 1). Retinal examination revealed

![Figure 1. Multiple ulcers on both legs.](image_url)
Case Report

moderate non-proliferative diabetic retinopathy in both eyes. Rest of the systemic examination was unremarkable. On laboratory investigation fasting and postprandial blood sugar were found to be 390 mg/dl and 555 mg/dl, respectively and the glycated hemoglobin 11.8% indicating a long period of undiagnosed diabetes. The 24-hour protein excretion was 536 mg/day indicative of diabetic nephropathy. Hemogram, blood urea, serum creatinine, serum electrolytes and liver function test were normal. Serology for Widal, HIV, VDRL and rheumatoid factor were negative. Urine examination was normal. ECG, chest X-ray and X-rays of both legs were normal.

Pus culture and sensitivity showed growth of Klebsiella pneumoniae. Wound debridement of both legs was done and skin biopsy from both legs was taken in view of the unusual appearance of the ulcer (Fig. 2). This showed many branching septate hyphal elements, budding form of Candida in the necrotic crust on the surface and broad non-septate hyphal elements of fungus consistent with Mucor seen haphazardly in the necrotic dermis indicating necrotising invasive fungal infection (mucormycosis) with candidial colonisation. A diagnosis of cutaneous mucormycosis of both legs was made and she was treated with oral antifungal drugs in addition to i.v. antibiotics and divided doses of human insulin along with oral hypoglycemic drugs for her glycemic control and regular dressing was done. Although i.v. amphotericin B is the drug of choice for mucormycosis, oral antifungals were started because of mixed infections and also because of the toxicity of amphotericin B. On review after 2 months, her blood sugar was under control, she had gained weight and the wound showed good signs of healing.

Discussion

Mucormycosis is caused by ubiquitous saprophytic fungi of the order Mucorales, class Zygomycetes, family Mucoraceae. Mucoraceae, that cause mucormycosis belong to the genera Rhizopus, Absidia and Mucor. These organisms are widely disseminated in the environment and infections are due to inhalation of spores which may be deposited in the nasal turbinates or may pass through the pulmonary alveoli. Growth and proliferation occur once the spores germinate and these organisms have the capacity to grow rapidly. It spreads by direct extension of the infected area and by vascular and lymphatic routes. Invasion of tissue and blood vessels, results in obstruction of blood flow and subsequent hypoxia, thrombosis, necrosis and hemorrhage.

On histology, the fungi appears as broad (10-20 μm in diameter) non-septate hyphae with branches occurring at right angles. Hyperglycemia, acidosis and increased amount of unbound iron appear to promote fungal growth by diminishing or inhibiting phagocytosis, which is a primary mechanism for prevention.

Clinical forms of mucormycosis consists of rhinocerebral, pulmonary, gastrointestinal, cutaneous and disseminated forms of which rhinocerebral infection is most common.

Primary cutaneous mucormycosis occurs in patients who have diabetes (because of a weakened immune system, hyperglycemia), severe burns, immunosuppression or chronic renal failure. Ryan, et al.5 described 2 types of primary
Case Report

cutaneous mucormycosis: Superficial and gangrenous. The
Superficial form is characterized by vesicles or pustules involving
the superficial dermis and subcutaneous tissue. The
gangrenous form, which develops as the disease progresses is characterized
by ulceration and formation of eschar. The mainstay of treatment is
early surgical intervention to remove all dead and infected tissue,
treatment of underlying medical disease, hyperbaric oxygen, local
irrigation of infected tissue and antifungal therapy. This patient had a
mixed fungal and bacterial infection, which was identified and treated
with good results. Associated fungal infections should be thought of in
unusual looking ulcers or if the response to conventional therapy
is poor.

References
1. Venkattaramanabalaji GV, Foster
Greene Jn, Muro-Cacho CA, Sandin RL, Saez R and Robinson
LA. Mucormycosis associated with deferoxamine therapy
after allogeneic bone marrow transplantation. Cancer Control
2. Bruck HM, Nash G, Foley D and
Pruih BA Jr. Opportunistic fungal
infection of the burn wound with
phycomycetes and Aspergillus:
A clinical-pathologic review. Arch.
3. Fennalva FS, Ramero R, Fores R,
Cabrera R, Briz Mand Fernandez
M. Micromycosis and hematopoietic
transplants. Haematologica. 1998;83:
950-951.
4. Morrison VA and McClare PB.
Mucormycosis in BMT
population. Bone Marrow
5. Ryan ME, Ochs D and Ochs J.
Primary cutaneous mucormycosis:

Nutritional Supplementation: A Boon in...

References
1. McCarty MF. Nutraceutical
2. Stracke H, Lindemann A and
Federlin K. A benzothiamine -
Vitamin B combination in
treatment of diabetic
3. Kuwabara S, Nakazawa R,
Azuma N, Suzuki M, Miyajima
K, Fukutake T and Hattori T.
Intravenous methylcobalamin
treatment for uremic and
diabetic neuropathy in chronic
hemodialysis patients. Intern.
4. Yaqub BA, Siddique A and
Sulimani R. Effects of
methylcobalamin on diabetic
Neurosurg. 1992;94(2): 105-111.
5. Packer L, Kraemer K and
Rimbach G. Molecular
aspects of lipoic acid in the
prevention of diabetes
complications. Nutrition
6. Haak E, Usadel KH, Kusterer
K, Amini P, Frommeyer R,
Tritscher HJ and Haak T.
Effects of alpha-lipoic acid on
microcirculation in patients
with peripheral diabetic
Endocrinol. Diabetes 2000;
7. McCarty MF. High-dose
biotin, An inducer of
glutaminase expression, may
 synergize with chromium
picolinate to enable a
definitive nutritional therapy
for type II diabetes. Med.
Hypotheses. 1999 May;52(5):
401-406.
8. Franconi F, Di Leo MA,
Bennardini F and Ghirlanda
G. Is taarine beneficial in
reducing risk factors for
diabetes mellitus? Neurochem.
9. Murray MT. Encyclopedia of
Nutritional Supplements.
Prima Publishing, Rocklin,
CA 1996.
10. Gegersen G, Harb H,
Helles A and Christensen J.
Oral supplementation of
myo-inositol: Effects on
peripheral nerve function in
human diabetics and on the
concentration in plasma,
erythrocytes, urine and muscle
tissue in human diabetics and
11. Metz TO, Alderson NL,
Thorpe SR and Baynes JW.
Pyridoxamine, An inhibitor of
advanced glycation and
lipoxidation reactions: A
novel therapy for treatment of
diabetic complications. Arch.
Biochem. Biophys. 2003 Nov.
1;419(1):41-49.
12. Vieira da Costa VA and Vianna
LM. Effect of alpha-tocopherol
supplementation on blood
pressure and lipidic profile in
streptozotocin-induced
diabetes mellitus in
spontaneously hypertensive
Jan.;351(1-2):101-104.
13. Al Shamsi MS, Amin A and
Adeghate E. Beneficial effect
of vitamin E on the metabolic
parameters of diabetic rats.
June;261(1-2):35-42.