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Longitudinal associations between ambient PM,

exposure and lipid levels in two Indian cities
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Nikhil Tandone, K. M. Venkat Narayan®¢, Mohammed K. Ali¢®, Viswanathan Mohan', Joel D. Schwartz9,

Dorairaj Prabhakaran®

Background: Exposure to ambient PM, . is known to affect lipid metabolism through systemic inflammation and oxidative stresa
Evidence from developing countries, such as India with high levels of ambient PM, . and distinct lipid profiles, is sparse.

Methods: Longitudinal nonlinear mixed-effects analysis was conducted on >10,000 participants of Centre for cArdiometabolic
Risk Reduction in South Asia (CARRS) cohort in Chennai and Delhi, India. We examined associations between 1-month and 1-year
average ambient PM, . exposure derived from the spatiotemporal model and lipid levels (total cholesterol [TC], triglycerides [TRIG],
high-density lipoprotein cholesterol [HDL-C], and low-density lipoprotein cholesterol [LDL-C]) measured longitudinally, adjusting for
residential and neighborhood-level confounders.

Results: The mean annual exposure in Chennai and Delhi was 40 and 102ug/m? respectively. Elevated ambient PM, . levels were
associated with an increase in LDL-C and TC at levels up to 100 pg/m? in both cities and beyond 125 pg/m? in Delhi. TRIG levels in
Chennai increased until 40 pg/m?é for both short- and long-term exposures, then stabilized or declined, while in Delhi, there was a con-
sistent rise with increasing annual exposures. HDL-C showed an increase in both cities against monthly average exposure. HDL-C
decreased slightly in Chennai with an increase in long-term exposure, whereas it decreased beyond 130 pg/m? in Delhi.
Conclusion: These findings demonstrate diverse associations between a wide range of ambient PM, . and lipid levels in an under-
studied South Asian population. Further research is needed to establish causality and develop targeted interventions to mitigate the

impact of air pollution on lipid metabolism and cardiovascular health.
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Introduction

Air pollution is a global environmental health issue,as the
majority of the world’s population resides in places where air
quality levels exceed World Health Organization standards.!
Ambient air pollution is among the leading risk factors for mor-
tality worldwide and is ranked among the topmost risk factors
for both mortality and morbidity in India.? There is a paucity
of evidence on the long-term cardiometabolic health impacts
of air pollution exposure from low- and middle-income coun-
tries (LMIC). A systematic review from LMIC suggests that the
majority of the evidence on the effect of ambient PM, | exposure
on cardiometabolic diseases is coming from China (~65% of
studies included in the systematic review).? Briefly, in this sys-
tematic review from LMIC, the effect estimates ranged from
0.24% to 6.11% increase per 10 pg/m? increase in PM, ; for
cardiometabolic disorders such as hypertension, type 2 dlabetes

What this study adds:

The relationship between exposure to PM, ; and lipid levels
remains unexplored in developing countries, such as India,
having high levels of air pollution and predilection to athero-
genic dyslipidemia. The existing literature on this relationship
has been inconsistent. Our study fills this gap by investigating
the associations using robust estimates of ambient PM, ; expo-
sure, covering a wide range of concentrations in a longitudinal
study within two major metropolitan Indian cities. We found
significant associations between ambient PM, ; exposure and
increased levels of atherogenic lipoproteins (low-density lipo-
protein cholesterol, total cholesterol, and triglycerides), coupled
with lower levels of protective lipoproteins (high-density lipo-
protein cholesterol), with variations between the two cities in
India.
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and cardiovascular (CVD) mortality.? Further, it was reported
that CVD-related hospitalizations and emergency room vis-
its also increased by 0.3% to 19.6% per 10 pg/m’ increase in
PM, .3

Altered lipid levels are suggested as potential mediators
between exposure to air pollution and cardiovascular disorders
through oxidative stress and subsequent systemic inflammatory
response.*” Indians are specifically vulnerable to atherogenic
dyslipidemia, which is characterized by lower high-density
lipoprotein cholesterol (HDL-C) and higher triglycerides and
low-density lipoprotein cholesterol (LDL-C) levels.® The prev-
alence of elevated LDL-C levels has been reported in approx-
imately 60% of Indians, high triglycerides (TRIG) in as many
as 42.6%, and low HDL-C levels in 56%.>'° In the last few
years, studies have examined exposure to ambient air pollution,
particularly PM, ., and lipid levels,""** but systematic reviews
and meta-analyses* show that the results have been inconsistent,
which may be attributed to smaller sample sizes, cross-sectional
designs, varying levels of air pollution concentrations, mixtures
of pollutants, heterogeneous methods of exposure assessment,
and employment of different statistical methods. No such study
has been reported from India which has hazardous levels of
PM, . levels'® and a relatively distinct lipid profile® than White
population and developed countries. Moreover, there is a huge
variation in air pollution levels among Indian cities due to sea-
sonal and topological differences.

At the National Institutes of Health (NIH)-funded Global
Environmental and Occupational Health (GEOHealth) Hub
in India, our team is utilizing existing cohort studies to gener-
ate evidence for cardiovascular health impacts of exposure to
ambient PM, . in Indian cities."”** This study aimed to examine
the associations of short-term (monthly) and long-term (annual)
exposure to PM, ;. with longitudinally measured serum lipid
levels (total cholesterol [TC], TRIG, HDL-C, and LDL-C) in
Chennai and Delhi, two metropolitan cities of south and north
India, respectively.

Materials and methods
Study population

We analyzed existing health data from the Centre for cArdiomet-
abolic Risk Reduction in South Asia (CARRS) cohort, which
involved a baseline survey followed by repeat assessments in
subsequent years with an overall response rate of approximately
85%.% In Delhi, we saw 75% response rate at follow-up 2 and
an impressive 98% at follow-up 4. In contrast, Chennai showed
80% at follow-up 2, dropping to 60% at follow-up 4. The
details of the cohort are described previously in Kondal et al.?!
Briefly, a population-based, multistage, cluster random sampling
design based on local administrative boundaries was used to
recruit adult men and women to be representative of each city.
Pregnant women and seriously ill individuals were excluded
from the recruitment. Wards were the primary sampling units,
which are administrative units that vary largely in size in dif-
ferent states and cities according to the population density. In
2011, Delhi city had 289 wards (total city area of 1,461 km?)
and Chennai city had 155 wards (total city area: 172 km?).
Twenty wards were randomly selected from urban districts. Five
Census Enumeration Blocks (CEBs) were randomly selected
from each of the 20 randomly selected wards to get 100 CEBs
from Chennai and Delhi. Finally, 20 households were selected
per CEB and two eligible participants, one man and one woman,
aged 20 years or older, were selected from each household based
on the “Kish method,” which has been used in the World Health
Organization’s STEPS surveys.?> Census boundaries and popu-
lation distribution were used to develop the sampling frame for
wards and CEBs, and field staff enumerated households within
CEBs to ensure up-to-date household maps and adequate cover-
age of the target population. Household mapping for each of the
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newly selected CEBs was conducted to establish the sampling
frame for random selection of households and participants.

CARRS participants were phenotyped for a range of cardio-
vascular risk factors during the baseline survey.?? Thereafter,
every year, these participants were followed for CVD events and
additionally for detailed lifestyle factors and physical examina-
tions, and every alternate year, for biological samples. The data
on the geocoded residence of the participants and how long they
have lived at their present location provided an excellent oppor-
tunity to estimate air pollution exposure levels at their residence.
For the present analyses, we utilized the information from the
baseline survey (2010 to 2012), second follow-up (2013 to
2014), and fourth follow-up (2016 to 2017) as the detailed lipid
profiling was done in these waves of data collection along with
other associated cardiovascular risk factors. Participants with-
out geocoded locations and missing lipid levels at any follow-up
were excluded from the analysis (17% in Delhi and 11% in
Chennai). Participants included in this analyses did not change
their residential location between follow-ups. We also excluded
participants who reported statin medication at any time point,
participants who had a history of any heart disease or stroke
(3.6% in Delhi and 2.6% in Chennai), and participants with
missing information on important confounders (3% in both
cities). Participants who were on statins at baseline were com-
pletely removed from the analysis, whereas participants who
initiated statin during the follow-ups or had missing informa-
tion in only one follow-up were not completely removed. They
contributed to the other follow-ups when they met the inclusion
criteria (e.g., if statin was initiated in the fourth follow-up, their
information until second follow-up was included in the analy-
sis). Figure 1 describes the complete process of sampling for the
present analyses.

The CARRS participants provided informed written consent
to utilize their deidentified phenotype data and biological sam-
ples for future studies and publish the research findings. The
GEOHealth Hub Grant was reviewed and approved by the
Institutional Ethics Committees of Public Health Foundation of
India (Ref. No. TRC-IEC.264.2/15), Centre for Chronic Disease
Control (Ref. No. CCDC_IEC_10_2017), Madras Diabetes
Research Foundation, and All India Institute of Medical Sciences
(Ref. No. [IEC/NP-401/09.10.2015).

Exposure assessment

Exposure to residential-level ambient PM, ; was assessed using
retrospective daily average PM, ; predictions at 1x1 km grids
from a hybrid spatiotemporal model, by assigning the CARRS
households to their respective grids. The details of this expo-
sure model have been described previously.?* In summary, this
was done utilizing satellite data, land use variables, meteorolog-
ical variables, and population density to build the model using
ensemble averaging approaches. The overall prediction accu-
racy of the model was 80% over the study period.”* We used
1-month (short-term) and 1-year (long-term) average exposures
for each participant starting from the day before the blood sam-
ple collection for the lipid profiling at each follow-up. We will
be using short term for the 1-month model and long term for the
1-year model going forward.

Outcomes

We used data on lipid levels (total cholesterol, triglycerides,
HDL-C, and LDL-C) at the baseline, second, and fourth follow-
up of the CARRS cohort as continuous measures. Details of
the lipid profiling of the participants have been described pre-
viously.?® Briefly, fasting blood samples were collected from the
participants after having a preinformed written consent and
the time of the last meal was recorded. Serum HDL-C was esti-
mated directly by an elimination method?’; total cholesterol was
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Baseline Follow up 2

Delhi -5342

Follow up 4

Delhi -4038 |

Chennai - 6722

[
Chennai - 5413

Chennai - 3969 ‘

Excluded Observations

Delhi - 804 (6.9%)

Chennal - 650 (4.5%)

Excluded Observations.

Delhi - 311 (2.8%)

Figure 1. Flowchart detailing inclusion of participants in the study.

| Delhi-5235 | -

3

Total Observations (Baseline + FUP2 + FUP4)

Delhi - 14,615
Chennai - 16,104 |
s 1) Excluding observations with missing exposure and outcome information
Observations remaining after exclusion 1)
Delhi - 11,616 |
Chennai — 14,308 |
. 2) Excluding obscrvations on lipid lowering medication, with heart disease and siroke
Observations remaining after exclusion 2)
| Dethi - 10,812

Chennai - 13,658

3) Excluding observations with missing covariate information
_ Dataset for Analysis
‘ Delhi - 10,501 |
Chennai - 13,206 |

estimated by an enzymatic endpoint method; and triglycerides
by GPO-PAP method.?* LDL-C level was estimated using stan-
dard Friedewald-Fredrickson formula.?” As LDL-C was esti-
mated using standard equations based on measured triglycerides
and HDL-C, we excluded participants with negative LDL-C val-
ues and triglyceride level >400 mg/dl for LDL-C analysis in this
study.?®

Confounders and covariates

The details of phenotyping for all the other physical measures
including anthropometry and questionnaire-based information
on medical history for cardiovascular diseases and lifestyle fac-
tors have been described in previous studies.?"»** Detailed struc-
tured questionnaires were administered to collect information
on sociodemographic and lifestyle factors including education,
occupation, dietary patterns, smoking (current, former, and
never), and alcohol consumption (frequency). International
Physical Activity Questionnaire (IPAQ) short was used to col-
lect data on physical activity and metabolic equivalence of task
scores per day were estimated following standard procedures.?’
Standard anthropometric procedures were followed to measure
body weight, height, and circumferences. Physical activity, body
mass index (BMI), and waist-to-hip ratio (WHR) had missing
data for follow-ups, hence we used baseline measures as a proxy
for overall health or health behavior. Although some data on
dietary pattern were available (with less variation within the
cohort), a detailed food frequency questionnaire was not used
to collect the dietary intake of the participants. Temperature
was obtained from daily average global climate reanalysis data
provided by the European Centre for Medium-Range Weather
Forecasts (ECMWEF) at a spatial resolution of 0.125 degrees.>
The Normalized Difference Vegetation Index (NDVI) data were
sourced from the moderate resolution imaging spectroradiom-
eter data.’! We calculated the distance from major roads and
shore in geographic information system analysis software by
utilizing information from Open Street maps. Socioeconomic
status at a neighborhood level was calculated using ward-wise
variables from the Census of India House listing and Housing
Census data, 2011, which includes variables indicating the qual-
ity of households (condition of census house, drinking water
source, lighting, facilities, and fuel use) and household assets
(banking and household assets such as vehicle ownership, tele-
vision, and internet).’?> We performed principal component anal-
ysis on these variables to come up with a total score (poorest

represented by lower score and wealthiest represented by high-
est score). The socioeconomics status (SES) score was found to
range from -13.4 to 8.3, where a value less than -1.35 belongs
to tertile 1 (poorest category), —1.34 to 1.4 falls in tertile 2 (mid-
dle category), and >1.4 falls in tertile 3 (wealthiest).

Our confounders include 1-month average temperature (only
for monthly exposure models), neighborhood-level socioeco-
nomic status score (based on household quality and assets at
a census tract level), road proximity (distance of the residence
from a major road), shore proximity (distance of the residence
from the shore in Chennai city), calendar time to account for
long-term trends (based on the day of blood sample mea-
surement), and the NDVI averaged for 6 months before lipid
measurement (indicator of greenness around the residence).
Temperature and all the residential factors including neighbor-
hood SES, NDVI, and proximity to road and shore affect both
neighborhood ambient PM, ; levels (influencing greenness and
traffic in that area) and lipids (influencing dietary choices due to
the specific lifestyle, SES of the area, and physical activity due
to access to amenities such as major parks and walkability). We
did not adjust for individual variables such as age, smoking, and
alcohol intake because these lifestyle factors only influence the
lipid levels but are not associated with residential PM, . levels.
Relationship of different covariates with ambient PM, | expo-
sure and the lipid levels are explained using a directed acyclic
graph included in the Supplementary Material (Figure S1; http://
links.lww.com/EE/A271).

Statistical analysis

The primary analysis was conducted to examine the associa-
tion of 1-month average and 1-year average PM, ; exposure
with the lipid levels (HDL-C, LDL-C, triglycerides, and total
cholesterol) over time. We used random intercept general-
ized additive models (GAM) to introduce flexibility into the
time-varying exposure-response relationship while accounting
for within-individual variations/correlation in a longitudinal
study. We adjusted for the previously mentioned confounders
as linear terms in the models. Penalized splines for PM, | were
used to avoid overfitting of the curve and random intercepts
were included for each individual and wards (area of resi-
dence) to account for within-participant correlation and spa-
tial clustering effect, respectively. We used inverse probability
weighting to correct for bias arising from loss to follow-up in
cohort studies. We estimated the probability of continuing in
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Exposure summaries across follow-ups for CARRS cohort in the study period

Median PM, , concentration (pg/m?) Delhi

Chennai

(25th, 75th percentile) Monthly average Annual average Monthly average Annual average
Baseline 81.3(64.2,99.8) 92.1(87.6,95.7) 35.0(30.8, 43.1) 41.1(38.7,43.4)
Follow-up 2 93.1(67.7,143.1) 99.3(92.2,107.1) 35.7(32.1,43.9) 41.5(38.9,44.2)
Follow-up 4 91.4(72.1,116.9) 121.3 (117.7,124.8) 33.3(29.4,36.7) 36.4 (34.5,39.9)

the study based on baseline covariates of the participants. For
each city, we predicted how likely someone is to drop out at
each follow-up using factors such as age, gender, education,
and health status, at baseline. These predictions were used
to adjust the weight of each participant’s data in the analy-
sis such that participants who were more likely to drop off
were up weighted to make the population similar to the study
population at baseline.*® The nonlinear spline curve for PM,
from the random intercept GAM model can be interpreted
as the average change in outcome associated with changes
in exposure over time while accounting for individual-level
differences and spatial clustering after adjusting for potential
confounders. The residuals of the models were examined to
determine if log transformations were required for outcomes.
Effect modification of age, sex, BMI, WHR, and physical
activity (computed at baseline using total metabolic scores)
on the association between ambient PM, ; exposure and lipid
levels was assessed using nonlinear spline interactions. The
effect modification was assessed based on a likelihood ratio
test between the nonlinear regression models with and with-
out effect modifiers.

Results

The demographic characteristics of participants are presented
in Table 1. The median age of participants at baseline was 44
years (SD = 12.8 years) in Delhi and 40 years (SD = 12.2 years)
in Chennai with 51% to 55% of the participants being females.
One in five participants reported themselves as alcohol consum-
ers and 20% were current smokers at baseline. The distribution
of BMI was similar in the two cities with half of the participants
being obese or overweight. WHR >0.85 was seen in 62% of
the participants in Chennai, compared with 72% in Delhi. The
median monthly temperature before lipid measurements ranged
around 24 to 28 °C in both cities across follow-ups. Median
6-month average NDVI also remained the same (0.31 to 0.33)
for Chennai residents across follow-ups but varied between 0.22
and 0.27 for Delhi during the 7-year study period. Participants
from Chennai lived closer to major roads than participants
in Delhi and lived on an average 4.5 km from the shore. The
median SES score for Chennai was -0.52 (interquartile range
[IQR]: -1.72 to 2.78) and Delhi was 0.36 (-1.49 to 1.99). The
SES scores of the two cities cannot be directly compared as they
are calculated relative to the study population of the respective
cities.

The trends in lipid levels are presented in Table 1. Overall,
both cities had comparable levels of TC at baseline and
remained constant over time with a median level of 180 mg/

(IQR: 154 to 205.5). Median LDL-C at baseline was
111.4mg/dl (IQR: 92 to 132) in Chennai and 105.4 mg/dl
(83.7 to 126.85) in Delhi, the levels of which remained con-
stant in Chennai but first increased then decreased in Delhi
over time. In Chennai, median baseline HDL-C was lower
(41 mg/dl [IQR: 36 to 47]) and more stable than in Delhi
(45 mg/dl [IQR: 38 to 53]) where it decreased over time. In
the case of triglycerides, Chennai had a median of 118 mg/dl
(IQR: 8 to 169) at baseline, which went up across follow-ups,
whereas, in Delhi, median triglycerides was 123 mg/dl (IQR:

92 to 169.25) and remained constant. The distribution of lip-
ids at baseline within quartiles of short-term exposure is given
in Table S1; http:/links.Iww.com/EE/A271. We observed
comparable lipid levels across different exposure categories
at baseline, with similar patterns for long-term exposure as
well. All outcomes except triglycerides were almost normally
distributed.

Table 2 provides a summary of ambient PM, | exposures expe-
rienced in the two cities during the study period. Both short- and
long-term exposures in Chennai were lower and ranged from
15 to 75 pg/m? compared with very high levels in Delhi with
exposures around 30 to 283 pg/m?. The mean 1-month expo-
sure in Chennai and Delhi was 37 (SD = 8) pg/m® and 96.43
(SD = 38.37) pg/m’, respectively. The mean 1-year exposure in
Chennai and Delhi was 40.16 (SD = 4.79) pg/m’ and 102.25
(SD = 15.37) pg/m?, respectively. Within city variability in expo-
sure across follow-ups was minimal, however, there were a
large number of outliers for monthly PM, . during the fourth
follow-up in 2016 (highlighted in Figure 52 htep://links.Iww.
com/EE/A271).

The relationship between exposure to ambient PM, ; and lipid
levels was found to be nonlinear in our study (Flgure A ,B). We
present the predicted levels of the outcome at different exposure
levels and the 95% prediction intervals (PI).

(1) HDL-C: Short-term exposure to ambient PM, . in Delhi
showed a positive association with HDL-C in both cit-
ies while long-term exposure to PM, ; had no effect on
HDL-C below 100 pg/m® in both Clties. However, in
Delhi, long-term exposures showed linear decrements in
HDL-C mostly beyond the 90th percentile (125 pg/m?)
only.

(2) LDL-C and TC: Short-term exposure to ambient PM, ,
was associated with a linear increase in LDL-C in both cit-
ies at 40 to 70 pg/m? and concentrations exceeding 70 pg/
m? in Delhi, the curve plateaus. In Chennai, the predicted
LDL-C was 112.5mg/dl (95% PI = 110.9, 114) at 30 pg/
m? average short-term exposure while it was 119.1 mg/dl
(95% PI = 116.3, 121.9) at 60 pg/m?. Short-term expo-
sure to ambient particulate matter was not associated
with TC in Delhi and showed a similar strong associa-
tion with short-term exposures in Chennai above 35 pg/
m?®. Long-term exposure to ambient PM, ; was associated
with higher levels of both LDL-C and TC in both cities.
Chennai showed a deep U-shaped curve with a decrease
up to 35 pg/m? and then an increase, whereas, in Delhi,
we observed slight increases up to 100 pg/m? and steeper
increments at very high exposures above 130 pg/m3. A
10 pg/m’ increase in long-term PM, , in Chennai (37 to
47 pg/m?) leads to an increase of approximately 2.5 mg/
dl (181.7mg/dl [179.7 to 183.7] to 184.2mg/dl [181.8
to 186.6]) in TC levels, whereas a 10 pg/m? increase at a
steeper slope of Delhi (135 to 145 pg/m?) corresponded to
3.3mg/dl rise (178.6 mg/dl [174.2 to 183.1] to 181.9mg/
dl [176.6 to 187.2]) in TC levels.

(3) TRIG: We ran both log-transformed and non log-
transformed models to check for the distribution of
residuals. Both models showed comparable results,
therefore we present the non log-transformed model
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Figure 2. Longitudinal association between short-term (A) and long-term (B) ambient PM, . exposure and lipid levels in Delhi and Chennai. Shaded areas repre-
sent point-wise prediction intervals. The lines depicted correspond to the 25th and 75th percentiles, marking the lower and upper boundaries of the interquartile

range. This range encapsulates the associations within the mid

dle 50% of the observations.

for better interpretability. Short-term exposure to
ambient PM, | in Delhi showed slight negative associ-
ations with TRIG in both cities. On the other hand,

long-term exposure to ambient PM, . was

2.5

with an increase in TRIG in both cities, with a linear
increase in Delhi, however, an increase and then pla-

teauing in Chennai (above 40 pg/m?).

associated

We observed significant effect modification by age on the
association between ambient PM,
TC, and TRIG (Figure 3A). In Delhi, the detrimental effects
of air pollution (increase in LDL-C, TC, and TRIG) were
observed to be greater in young individuals compared to the
elderly (260 years), for both short- and long-term exposures.

and HDL-C, LDL-C,

In Chennai, the impact of short-term exposure on young
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Figure 3. Association between exposure to short-term (A) and long-term (B) ambient PM, . and lipid levels stratified by effect modifier. Shaded areas represent

point-wise prediction intervals.

individuals was greater; however, the elderly population
experienced a greater impact from long-term exposure to
air pollution. In Chennai, differences in association between
air pollution and lipids were also observed between males
and females (Figure 3B). Males showed more substantial
increases in LDL-C and TC in response to both short- and
long-term exposures to air pollution. In contrast, females

in Chennai demonstrated lower HDL-C levels and higher
levels of TRIG with an increase in air pollution exposure.
Although the differences were less pronounced in Delhi, a
similar pattern was observed in Chennai. We did not observe
any clear patterns in effect modification for other physical
activity, BMI, and WHR (Figure S3; http://links.lww.com/
EE/A271).
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Discussion

Our study aimed to investigate the longitudinal association of
short-term (1-month average) and long-term (1-year average)
exposure to ambient PM, | on lipid levels in two Indian cities.
Overall, we observed a significant increase in atherogenic lip-
ids (LDL-C, TC, and TRIG) and a decrease in protective lipid
(HDL-C) with an increase in both short- and long-term ambi-
ent PM, , exposures. We noted some city-specific differences. In
Chennal exposure to ambient PM, ; was significantly associ-
ated with increased LDL- C, TC, and TRIG; however, steeper
slopes were seen for short-term exposure. In Delhl we observed
detrimental effects of LDL-C (at levels <100 pg/m3) and TRIG
against monthly average exposures, while long-term exposure
to ambient PM, ; had a pronounced impact on the lipid levels of
the residents of Delhi. The steeper curves at the highest quartile
of exposure should be interpreted carefully based on the expo-
sure distribution and precision of the estimates.

The notable differences observed in the association results of
Delhi and Chennai may be explained by a marked difference in
the levels of PM, ; in these two cities in addition to seasonal and
lifestyle differences that may contribute to different metabolic pro-
files. Delhi is the national capital situated in north India within the
Indo-Gangetic plain witnessing extremes of summers and winters.
In addition to its own pollution sources, land-locked Delhi also
receives pollutants from adjoining north Indian states. The wind
direction, low speed, and low temperature become unfavorable
for the dispersion of pollutants, thus making Delhi more pol-
luted than Chennai. On the other hand, Chennai is a coastal city
in southern India that experiences moist summers and does not
experience winters, which helps in the dispersion of pollutants.
These climatic and topological factors cause the major differences
in PM, ; levels. Moreover, there are ethnic and sociocultural dif-
ferences between the two cities, which affects the metabolism and
lipid levels. Lifestyle factors such as dietary patterns that greatly
influence the lipid levels, are majorly determined by the climatic
factors, dictary choices, and cooking practices specific to different
ethnic and geographic populations. Further, our present findings
suggest a greater detrimental effect of continuously high exposures
leading to a detectable change in lipid levels (greater long-term
responses in Delhi compared to more short-term effects on lipids
in Chennai). This could be because, in areas with lower levels of air
pollution (such as Chennai), the threshold for observing changes
in lipid levels might be easily surpassed, which leads to easy detec-
tion of increased lipid levels attributable to short-term spikes in air
pollution in comparison to detecting short-term impacts in Delhi.
The areas with lower levels of air pollution might have a smaller
“buffer” before the threshold for detecting increased lipid levels
is reached (as the threshold is lower), and people living in these
areas are less likely to have adapted to the effects of air pollution.
Individuals in Delhi may have adapted to high air pollution levels,
which might reduce their sensitivity to short-term fluctuations in
ambient PM, | levels. Concentration-response curves for air pol-
lution and health effects have often shown plateauing of health
effects at higher air pollution levels.** Therefore, exposures in
Chennai are more in the range where effects are detected, whereas
in Delhi we observed effects either at <100 pg/m? or at extremely
high exposures (>90th percentile).

In our study, we also observed distinct patterns of air pol-
lution effects on different age groups. In Delhi, the younger
population showed a higher susceptibility to air pollution expo-
sure compared to Chennai, where the elderly participants were
more affected. Chennai had greater detrimental impacts on the
elderly, which might be due to differences in dietary patterns
and lifestyle choices among the younger individuals in the two
cities. The differences in Delhi might be because elderly partici-
pants might have had comorbid conditions and could have been
taking medications such as beta blockers and antidiabetic drugs,
which could influence their lipid levels and potentially limit their
overall exposure to ambient air pollution. Interestingly, we did
not observe any differences in the associations between genders
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in Delhi. In addition to perennial exposure to high PM, | levels,
there could be uniformity in the lifestyle and health care seeking
behavior between genders in the city, which might explain sim-
ilar outcomes. In Chennai, however, males exhibited increased
levels of LDL-C and total cholesterol, along with a surge in
HDL-C. These findings highlight the complex interplay between
air pollution and effect modifiers (such as age, gender, and life-
style habits), which collectively influence the lipid profiles and
susceptibility to the adverse effects of air pollution in different
populations. Studies have shown greater impacts of air pollu-
tion on the elderly and males, which is similar to our results
from Chennai, which is within the range of PM, ; concentra-
tions of these studies.?>-¢ We did not observe effect modification
by physical activity, BMI, and WHR in our data, which could
be because these were measured only at baseline and might have
changed over time (Figure S3; http:/links.lww.com/EE/A271).
We could not examine effect modification by dietary factors as
detailed information on dietary intake (food frequency ques-
tionnaire) was not captured and there was minimal variation in
the dietary data available for analyses.

The exact biological mechanisms to explain the association
between particulate matter exposure and lipid levels are not
very clear but the most suggested ones include the oxidative
stress and systemic inflammation that affect lipid metabolism.”
Altered DNA methylation of candidate genes involved in lipid
metabolism induced by air pollution exposure is also suggested
to play a mediating role between exposure to PM, , and altered
lipid levels,” thereby, making them ideal targets for thera-
peutic intervention® to reduce cardiometabolic diseases. The
current body of literature on the possible role of ambient air
pollution exposure on altered lipid levels is inconsistent.* Kim
et al® did not find significant associations between exposure
to air pollution and lipid levels in a Korean population. This
might be because this study was conducted at a lower PM, |
concentration setting in South Korea and among healthy sol-
diers that have different physique and metabolic profile than
the general population. Study conducted in an Italian birth
cohort also showed no associations between ambient air pol-
lution and childhood obesity parameters including total choles-
terol and HDL-C.?* Nevertheless, studies conducted in United
States, Israel, and China provide evidence to suggest a possi-
ble link between air pollution exposure and lipid levels,!4-42
where stronger associations of ambient air pollution exposure
were found among people with high levels of lipid than those
with lower levels of lipids."*? There is conflicting evidence for
different lipid measures as well. Bell et al* in a cross-sectional
design found only long-term and no short-term effects between
PM, ; and HDL-C. A Chinese quasi-experimental longitudinal
study found a significant effect of long-term exposure on total
cholesterol and LDL-C but not with triglycerides and HDL-
C.* A cohort study from China also reported that long-term
exposure to PM, . was associated with a significant increase in
LDL-C, weaker “association with TC, and no association with
HDL-C and triglycerides.* A study from an elderly population
in Taiwan showed that increased 1-year average PM, ; was asso-
ciated with increased total cholesterol levels at PM, ; concen-
trations similar to Chennai in our study.* A study conducted in
northwestern China among type 2 diabetes patients also looked
at nonlinear associations between lipid levels and short-term
exposure to SO,, NO, and PM, . The authors found J-shaped
and inverted U- shaped curves with similar patterns for different
lipid parameters (increase in HDL-C, LDL-C, TC, and plateau-
ing of TRIG effects).*”

To the best of our knowledge, this is the first study con-
ducted in India to demonstrate the impact of monthly and
annual exposure to ambient PM, ; on lipid levels. Our study
findings align with existing global literature, particularly per-
tinent to diverse South Asian populations with predilection to
atherogenic dyslipidemia encompassing a wide range of ambi-
ent PM, ; exposure levels. Moreover, this study includes two
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metropolitan cities in India, which are distinct in geography,
lifestyle factors, and air pollution levels, making our study
more generalizable. The findings are based on a large sam-
ple size with repeated measurements spanning from 2010 to
2017, hence, providing robust and comprehensive estimates.
To address missing covariate data, we have used imputations
and inverse probability weighting methods were used to correct
for bias from loss to follow-up. Furthermore, exposure assess-
ment was carried out using a highly reliable prediction model
at fine spatial-temporal resolution. Although personal monitor-
ing is most ideal for examining the effect of air pollution on
an individual’s health outcomes, it is not logistically feasible to
personally monitor such a huge number of participants regu-
larly over the years. Exposure assessment at the residential level
reduces confounding by individual factors (individual-level
variables such as physical activity or occupation do not affect
air pollution at a residential level) but may lead to exposure
misclassification, which may bias results. We accounted for all
the available and possible confounders; however, there is still
a possibility of unmeasured confounding due to occupational
exposures, noise, and more robust physical activity measure-
ment. Anthropometrics and physical activity data were not reli-
able for the follow-ups; therefore, we used the baseline data.
Unfortunately, we did not have detailed dietary intake infor-
mation to estimate fat consumption specifically, which greatly
influences the lipid levels.

We found that exposure to ambient particulate matter is asso-
ciated with altered lipid levels in the Indian population. Increase
in LDL-C, total cholesterol, and triglycerides and decrease in
HDL-C are known risk factors for developing cardiovascular
disease; therefore, findings from this study can assist in strength-
ening evidence and advocate for policy changes to reduce air
pollution levels. While our longitudinal study adds to the inade-
quate evidence from low- and middle-income countries, further
studies from regions with varying levels of pollution, geogra-
phy, ethnicity, and different age groups are required to gain a
more nuanced understanding of this relationship and resolve the
inconsistencies in the literature.
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